

Savision iQ
REST API GUIDE

DOCUMENT DATE: JANUARY 25, 2021

NOTICE

The information contained in this document is believed to be
accurate in all respects but is not warranted by Martello Technologies
Corporation. The information is subject to change without notice and

should not be construed in any way as a commitment by Martello
Technologies or any of its affiliates or subsidiaries. Martello
Technologies and its affiliates and subsidiaries assume no

responsibility for any errors or omissions in this document. Revisions
of this document or new editions of it may be issued to incorporate

such changes.

No part of this document can be reproduced or transmitted in any
form or by any means - electronic or mechanical - for any purpose

without written permission from Martello Technologies.

Trademarks

MarWatch™, Savision, Martello Technologies, and the Martello
Technologies logo are trademarks of Martello Technologies

Corporation.

Windows and Microsoft are trademarks of Microsoft Corporation.

Other product names mentioned in this document may be
trademarks of their respective companies and are hereby

acknowledged.

© Copyright 2021, Martello Technologies Corporation

All rights reserved

Rest API Guide
Release 2.9 - January 25, 2021

Contents

3

Contents
CHAPTER 1

Introduction 4

Document Purpose and Intended Audience 4

Revision History 4

CHAPTER 2

About the REST API 5

Basic Components 5
Elasticsearch Node 5
Elasticsearch Index 5
Elasticsearch Type 6
Elasticsearch Document 6
Source 6

Savision iQ Object Types 6
Component 7

Component Relationships 11
Hosting Relationship 12
Containment Relationship 12
Reference Relationship 13

CHAPTER 3

Configuring an API Source 15

CHAPTER 4

Using the REST API 17

Create and Update a Document 17

Retrieve a Document 19

Delete a Document 20

Batch Processing 21

Search Documents 22

List all Indexes 23

Delete an Index 23

CHAPTER 1

Introduction
Document Purpose and Intended Audience

This document contains information about configuring and using the Savision iQ
Rest API.

Revision History
Document Date Description

January 25, 2021 Savision iQ Rest API Guide

CHAPTER 1

4

CHAPTER 2

About the REST API
The Savision iQ REST API allows an external application to control the information
stored in the Savision iQ Elasticsearch database. Use the information in the
following sections to understand the core concepts of the Savision iQ REST API.

 l "Basic Components" on page 5
 l "Savision iQ Object Types" on page 6
 l "Component Relationships" on page 11

Basic Components
There are a few concepts that are core to Savision iQ and Elasticsearch. You must
understand these concepts to successfully use the Savision iQ REST API.

Elasticsearch Node
By default, Savision iQ installs a single Elasticsearch node co-located with the
Savision iQ application in the same server. This node is responsible for storing the
data that originates from different Sources, and provides indexing and search
capabilities.

Elasticsearch Index
An index is a collection of documents that have similar characteristics. In Savision
iQ, there are specific indices for Components and States, Component Relationships,
Alerts, and Incidents. An index is identified by a name (that must be all lowercase)
and this name is used to refer to the index when performing indexing, search,
update, and delete operations against the documents in it. The following index
categories are defined in Savision iQ:

 l savisioniq_components_<SourceGuid>—Each of these indices stores
documents of type Component and Component State related to a specific
Source.

 l savisioniq_component_relationships_<SourceGuid>—Each of these indices
stores documents of type Component Relationship related to a specific Source.

 l savisioniq_alerts_<SourceGuid>—Each of these indices stores documents of
type Alert related to a specific Source.

CHAPTER 2

5

Savision iQ Rest API Guide

6

 l savisioniq_incidents_<SourceGuid>—Each of these indices stores documents
of type Incident related to a specific Source.

Elasticsearch Type
Within an index, only one single Elasticsearch type is defined by Savision iQ. A type
is defined for documents that have a set of common fields. The index category
savisioniq_components_* contains the Elasticsearch type “esentity,” which may
represent two different Savision iQ types: the parent type Component and the child
type Component State. The following Elasticsearch types are defined in Savision iQ:

 l esentity—This type is defined in the indices savisioniq_components_* and
may represent the parent type Component and the child type Component
State.

 l componentrelationship—This type is defined in the indices savisioniq_
component_relationships_*.

 l alert—This type is defined in the indices savisioniq_alerts_*.
 l incident—This type is defined in the indices savisioniq_incidents_*.

Elasticsearch Document
A document is a basic unit of information that can be indexed. For example, in
Savision iQ you can have a document for a single Alert, another document for a
single Component, and another for a single Incident. This document is expressed in
JSON (JavaScript Object Notation), which is a ubiquitous internet data interchange
format. Within an index/type, you can store as many documents as you want.

Note: Although a document physically resides in an index, a
document actually must be indexed/assigned to a type inside an
index.

Source
In Savision iQ a Source (also called Integration in the interface) represents a specific
Monitoring or ITSM system—such as SCOM or ServiceNow—that provides the data to
be stored into Elasticsearch. Each Source is uniquely identified by a GUID.

Savision iQ Object Types
The Savision iQ REST API has five different types of objects:

 l Component
 l Component State
 l Component Relationship
 l Alert
 l Incident

Chapter 2 About the REST API

7

You must provide a valid object of a specific type to correctly create and update a
document in Elasticsearch using the Savision iQ REST API.

Component
A Component is defined as it follows:

esentity

{

joinKey (join)

key (text)

sourceId (text)

sourceName (text)

sourceType (text)

source (object)

name (text)

typeEnum (integer)

host (text)

path (text)

url (text)

iPAddress (text)

fqdn (text)

geoLocation (geo_point)

}

For additional information about the Elasticsearch datatypes see:

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/mapping-types.html

The following table lists the fields in the Component document:

Field Description

joinKey

This is a special field that creates a parent/child relation
between one Component (the parent) and the associated
Component States (the children). For a Component it must be
always set to “parent”.

key

The unique identifier of the Component document. A key is
composed of two parts separated by a pipe character |. The
first part is the ID of the Source of the Component; the
second part is a string the uniquely identifies that
Component among all the Components of the Source.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/mapping-types.html/

Savision iQ Rest API Guide

8

Field Description

sourceId
The unique identifier of the Source related to the Component.
A sourceId is the string representation of a globally unique
identifier (GUID).

sourceNam
e The name of the Source related to the Component.

sourceType
The type of the Source related to the Component, for example
“SCOM” or “ServiceNow”. For a Savision iQ API Source the type
must always be “VirtualConnector”.

source An object that contains the raw properties of the Component
specific to the Source.

name The name of the Component object.

typeEnum
An integer that represents the type of the Component. For a
list of possible Component types and their values, please see
below.

host The name of the Component that hosts the Component.

path The path that identifies Source related to the Component.

url

The URL that locates the Component in the Monitoring/ITSM
system. You can use this URL to navigate to the page of the
Monitoring/ITSM system that contains specific information
about this Component.

iPAddress The IP address(es) associated with the Component.

fqdn The fully qualified domain name associated with the
Component.

geoLocatio
n

The geolocation of the Component.

For information about how to specify a geoLocation field, see
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/g
eo-point.html

The possible Component types are:

 l 1: Object
 l 2: Group
 l 3: Service
 l 4: Computer
 l 5: Database
 l 6: Website
 l 7: Virtual Machine

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/geo-point.html/
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/geo-point.html/
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/geo-point.html/

Chapter 2 About the REST API

9

An example of a SCOM Component in JSON format is the following:

Savision iQ Rest API Guide

10

{

"joinKey": "parent",

"name": "TestDB1",

"typeEnum": 5,

"path": "BRSRV2012R2-2.savisionlab.Savision.int;MSSQLSERVER",

"url": "/ManagedEntity/ManagedEntity/9a84ffd3-5b42-85e7-c242-
9264cd6a62e9",

"fqdn": "fqdn": "BRSRV2012R2-2.savisionlab.Savision.int",

"key": "12b3b4b4-ec8b-4d03-8b64-19f90c47c1ab|9a84ffd3-5b42-85e7-
c242-9264cd6a62e9",

"sourceId": "12b3b4b4-ec8b-4d03-8b64-19f90c47c1ab",

"sourceName": "Unity iQ SCOM 01",

"sourceType": "SCOM",

"source": {

"scom": {

"Object Display Name": "TestDB1",

"FullName":
"Microsoft.SQLServer.2014.Database:BRSRV2012R2-
2.savisionlab.Savision.int;MSSQLSERVER;TestDB1",

"Id": "9a84ffd3-5b42-85e7-c242-9264cd6a62e9",

"ManagementGroupName": "savisonUnityiQ",

"Path": "BRSRV2012R2-
2.savisionlab.Savision.int;MSSQLSERVER",

"TimeAdded": "2017-02-07T18:04:24.4991017",

"Database Name": "TestDB1",

"Recovery Model": "",

"Database Autogrow Set": "",

"Log Autogrow Set": "",

"Updateability": "",

"User Access": "",

"Collation": "",

"Owner": "",

"Resource Pool": "",

"Object Status":
"System.ConfigItem.ObjectStatusEnum.Active",

"Asset Status": "",

"Notes": "",

"Display Name": "TestDB1",

"Instance Name": "MSSQLSERVER",

"Principal Name": "BRSRV2012R2-
2.savisionlab.Savision.int"

Chapter 2 About the REST API

11

}

}

}

In order to create, update, delete, and retrieve a Component or a batch of
Components, you need to specify the routing parameter in the request, and the
routing parameter must equal the key property of the component. See the section
"Create and Update a Document" on page 17 for an example of a request.

Component Relationships
A Component Relationship is defined as it follows:

componentrelationship

{

key (text)

sourceId (text)

sourceName (text)

sourceType (text)

source (object)

name (text)

sourceComponent (text)

destinationComponent (text)

typeEnum (integer)

}

The following table lists the fields in the Component Relationships document:

Field Description

key

The unique identifier of the Component
Relationship document. A key is composed
of two parts separated by a pipe character
|. The first part is the ID of the Source of the
Component Relationship; the second part
is a string that uniquely identifies the
Relationship among all the Relationships
of the Source.

sourceId

The unique identifier of the Source related
to the Component Relationship. A sourceId
is the string representation of a globally
unique identifier (GUID).

Savision iQ Rest API Guide

12

Field Description

sourceName The name of the Source related to the
Component Relationship.

sourceType

The type of the Source related to the
Component Relationship, for example
“SCOM” or “ServiceNow”. For a Savision iQ
API Source the type must always be
“VirtualConnector”.

source
An object that contains the raw properties
of the Component Relationship specific to
the Source.

name The name of the Component Relationship
object.

sourceComponent
The key (unique identifier) of the
Component that represents the “source” in
the relationship.

destinationComponent
The key (unique identifier) of the
Component that represents the
“destination” in the relationship.

typeEnum

An integer that represents the type of the
Component Relationship. For a list of
possible Component Relationship types
and their values, please see below.

The possible Component Relationship types are:

 l 1: Hosting
 l 2: Containment
 l 3: Reference

Hosting Relationship
The most restrictive relationship between Components is the hosting relationship.
When one Component is hosted by another, that Component relies on its hosting
parent for its very existence. If the hosting parent is removed, the hosted child will
also be removed. For example, a logical disk cannot exist without the computer that
it is installed on. A hosted Component can have only one hosting parent, but one
parent can host multiple children. For example, a particular disk can be installed on
only a single computer, but one computer can have several disks installed.

Containment Relationship
The containment relationship type is less restrictive than the hosting relationship. It
declares that one Component is related to another Component, although one is not

Chapter 2 About the REST API

13

required for the other. Unlike a hosting relationship, a containment relationship is
many-to-many. This means that one Component can contain multiple Components,
and a single Component can be contained by multiple other Components. For
example, one group can contain multiple components, and a single component can
be a member of multiple groups.

Reference Relationship
The reference relationship is the most general relationship type. A reference
relationship is used when the source and destination components are not
dependent on one another; for example, a database can reference another database
that it is replicating. One database is not dependent on the other, and the
Components exist separately.

An example of a SCOM Component Relationship in JSON format is the following:

Savision iQ Rest API Guide

14

{

"name": "BRSRV2012R2-2.savisionlab.Savision.int\\MSSQLSERVER Hosts
BRSRV2012R2-2.savisionlab.Savision.int\\MSSQLSERVER\\TestDB1",

"sourceComponent": "12b3b4b4-ec8b-4d03-8b64-19f90c47c1ab|da967a6a-
0ac8-57fc-287e-2b21f818ca13",

"destinationComponent": "12b3b4b4-ec8b-4d03-8b64-
19f90c47c1ab|9a84ffd3-5b42-85e7-c242-9264cd6a62e9",

"typeEnum": 1,

"type": "Hosting",

"key": "12b3b4b4-ec8b-4d03-8b64-19f90c47c1ab|d6a9160b-785c-388f-
d09d-32c5a4861ea4",

"sourceId": "12b3b4b4-ec8b-4d03-8b64-19f90c47c1ab",

"sourceName": "Unity iQ SCOM 01",

"sourceType": "SCOM",

"source": {

"scom": {

"Object Display Name": "MSSQLSERVER - TestDB1",

"TypeName": "MSSQL 2014: SQL Server 2014 Database
Engine Hosts SQL Database",

"TypeDescription": null,

"SourceDisplayName": "MSSQLSERVER",

"SourceFullName":
"Microsoft.SQLServer.2014.DBEngine:BRSRV2012R2-
2.savisionlab.Savision.int;MSSQLSERVER",

"SourceId": "da967a6a-0ac8-57fc-287e-2b21f818ca13",

"SourcePath": "BRSRV2012R2-
2.savisionlab.Savision.int",

"TargetDisplayName": "TestDB1",

"TargetFullName":
"Microsoft.SQLServer.2014.Database:BRSRV2012R2-
2.savisionlab.Savision.int;MSSQLSERVER;TestDB1",

"TargetId": "9a84ffd3-5b42-85e7-c242-9264cd6a62e9",

"TargetPath": "BRSRV2012R2-
2.savisionlab.Savision.int;MSSQLSERVER",

"ManagementGroupName": "savisonUnityiQ",

"LastModified": "2017-02-07T18:04:24.673"

}

}

}

CHAPTER 3

Configuring an API Source
Before starting to use the Savision iQ REST API, you need to configure an Open
API source in Savision iQ. Use the following procedure to configure the source.

1. Connect to Savision iQ using a browser.
2. From the main menu, select Settings.

The Integrations page displays.
3. Click the Add button at the bottom of the page.
4. Select Savision API.
5. Enter the following information and click Save:

Property Description

Agent

Select a server to communicate with the source
system. This can be the Savision iQ web server or
a machine that has a Savision iQ Remote agent
installed on it.

Name Provide a name for the integration; this name
displays on the Savision iQ interface.

Discovery Interval How often the objects are loaded from the
integrated system. The default is 3600 seconds.

Operation Interval How often health states, alerts, and/or incidents
are collected. The default is 120 seconds.

6. To view and copy the source GUID, click the button.

Note:
It is important to know the GUID because it is used to define the
indices of Elasticsearch. The source GUID is reported in the
property sourceGuid and it is used to populate the property
sourceId of any Document created with the Savision iQ REST

CHAPTER 3

15

Savision iQ Rest API Guide

16

API. The Connector Type is always VirtualConnector and it is used
to populate the property sourceType of the created Document.

7. Click the Roles tab and select a role.
A new page displays.

8. Click a role and select Integrations.
9. Click the Add button.
10. Select an integration from the list and click Add.
11. Optional. If you want users in this role to have read-only access to the

integration, select the Read-only box.

CHAPTER 4

Using the REST API
In order to communicate to the Elasticsearch node by using the Savision iQ REST
API you need to have HTTP access to the Savision iQ Server address and port 9200.

By default, the Elasticsearch node binds to loopback addresses only, i.e. 127.0.0.1 and
[::1]. If you want to have access from other servers, the Elasticsearch node will need
to bind to a non-loopback address: in the Elasticsearch configuration file
“elasticsearch.yml” modify the setting “network.host” to make the node bind to a
different hostname or IP address. For more details, please consult the Elasticsearch
documentation.

The pattern of how to access data in Elasticsearch can be generally summarized as
follows:

<REST Verb> <Savision iQ Server>:9200/<Index>/<Type>/<ID>

The REST verbs used to interact with Elasticsearch are GET (Retrieve/List), PUT
(Create/Update), DELETE (Delete) and POST (Batch Processing).

Command-line tools like curl , PowerShell’s Invoke-RestMethod or visual tools like
Postman can be used to perform REST requests.

To illustrate the Savision iQ REST API, we will make use of the curl syntax in the
following examples. For simplicity the Unix syntax is adopted; if you use curl in a
Microsoft Windows command prompt, you should replace all the single quotes (')
with double quotes (") and any double quote (") inside single quotes with two
double quotes ("").

Create and Update a Document
To create or update an existing document, you use the Index API, specifying the
index, the type and the ID of document.

The basic syntax for indexing a document is:

PUT <Savision iQ Server>:9200/<Index>/<Type>/<ID>

You must provide the object to persist in JSON format in the body of the request.
The ID of the document must be equals to the key property of the object to persist.

CHAPTER 4

17

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/settings.html
https://curl.haxx.se/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod?view=powershell-6
https://www.getpostman.com/
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/docs-index_.html

Savision iQ Rest API Guide

18

For example to index a simple Component document into the savisioniq_
components_075261f3-e421-41d7-b71b-8320dccbf194 index, using the curl tool:

curl -XPUT 'localhost:9200/savisioniq_components_075261f3-e421-41d7-
b71b-8320dccbf194/esentity/075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001?routing=075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001' -H 'Content-Type: application/json' -d'

{

"joinKey": "parent",

"name": "Testing Server 1",

"typeEnum": 4,

"key": "075261f3-e421-41d7-b71b-8320dccbf194|SRV0000001",

"sourceId": "075261f3-e421-41d7-b71b-8320dccbf194",

"sourceName": "Samanage 01",

"sourceType": "VirtualConnector",

"source": {

"api": {

"DisplayName": "Testing Server 1",

"Id": "SRV0000001",

"TimeAdded": "2017-02-07T18:04:24.4991017",

}

}

}

'

Note how the Document ID matches the Component key. In addition, you need to
specify the routing parameter in the request, and the routing parameter must equal
the key property of the component.

And the response:

Chapter 4 Using the REST API

19

{

"_index" : "savisioniq_components_075261f3-e421-41d7-b71b-
8320dccbf194",

"_type" : "esentity",

"_id" : "075261f3-e421-41d7-b71b-8320dccbf194|SRV0000001",

"_version" : 1,

"result" : "created",

"_shards" : {

"total" : 1,

"successful" : 1,

"failed" : 0

},

"created" : true

}

From the above, we can see that a new document of type esentity was successfully
created inside the specified index. The document also has an internal id of
“075261f3-e421-41d7-b71b-8320dccbf194|SRV0000001” which we specified at index
time.

It is important to note that Elasticsearch does not require you to explicitly create an
index first before you can index documents into it. In the previous example,
Elasticsearch will automatically create the index “savisioniq_components_075261f3-
e421-41d7-b71b-8320dccbf194” if it didn’t already exist beforehand.

To update an existing document you can execute the above command again with a
different (or same) JSON object; in fact Elasticsearch will replace (i.e. re-index) a new
document on top of the existing one with the ID of “075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001”.

If, on the other hand, you use a different ID, a new document will be indexed and
the existing document(s) already in the index remains untouched.

Retrieve a Document
To retrieve an existing document, you use the Get API, specifying the index, the type
and the ID of document.

The basic syntax for retrieving a document is:

GET <Savision iQ Server>:9200/<Index>/<Type>/<ID>

The following example shows how use the curl tool to retrieve the Component
document that was previously indexed:

curl -XGET 'localhost:9200/savisioniq_components_075261f3-e421-41d7-
b71b-8320dccbf194/esentity/075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001?routing=075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001'

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/docs-get.html

Savision iQ Rest API Guide

20

You need to specify the routing parameter in the request, and the routing parameter
must equal the key property of the component.

Here is the response:

{

"_index" : "savisioniq_components_075261f3-e421-41d7-b71b-
8320dccbf194",

"_type" : "esentity",

"_id" : "075261f3-e421-41d7-b71b-8320dccbf194|SRV0000001",

"_version" : 1,

"found" : true,

"_source" : {

"joinKey": "parent",

"name": "Testing Server 1",

"typeEnum": 4,

"key": "075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001",

"sourceId": "075261f3-e421-41d7-b71b-8320dccbf194",

"sourceName": "Samanage 01",

"sourceType": "VirtualConnector",

"source": {

"api": {

"DisplayName": "Testing Server 1",

"Id": "SRV0000001",

"TimeAdded": "2017-02-07T18:04:24.4991017",

}

}

}

}

The response field found, reports if the requested document was found, while the
field _source returns the full JSON document that was previously indexed.

Delete a Document
To delete an existing document, you use the Delete API, specifying the index, the
type and the ID of document.

The basic syntax for deleting a document is:

DELETE <Savision iQ Server>:9200/<Index>/<Type>/<ID>

The following example shows how to use the curl tool to delete the Component
document that was previously indexed:

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/docs-delete.html

Chapter 4 Using the REST API

21

curl -XDELETE 'localhost:9200/savisioniq_components_075261f3-e421-
41d7-b71b-8320dccbf194/esentity/075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001?routing=075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000001'

You need to specify the routing parameter in the request, and the routing parameter
must equal the key property of the component.

See the _delete_by_query API to delete all documents matching a specific query. It
is worth noting that it is much more efficient to delete a whole index instead of
deleting all documents with the Delete By Query API.

The response field found, reports if the requested document was found, while the
field _source returns the full JSON document that was previously indexed.

Batch Processing
In addition to being able to index and delete individual documents, Elasticsearch
also provides the ability to perform any of the above operations in batches using the
bulk API. This functionality is important in that it provides a very efficient
mechanism to do multiple operations as fast as possible with as few network
roundtrips as possible.

The basic syntax for indexing a document is:

POST <Savision iQ Server>:9200/<Index>/<Type>/_bulk

You must provide the following newline delimited JSON (NDJSON) structure in the
body of the request:

action_and_meta_data\n

optional_source\n

action_and_meta_data\n

optional_source\n

…

action_and_meta_data\n

optional_source\n

For example, to index two Component documents in one bulk operation:

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/docs-delete-by-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/docs-bulk.html

Savision iQ Rest API Guide

22

curl -XPOST 'localhost:9200/savisioniq_components_075261f3-e421-41d7-
b71b-8320dccbf194/esentity/_bulk' -H 'Content-Type: application/json'
-d'

{"index":{"_id":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000002","routing":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000002"}}

{"joinKey":"parent","name":"Testing Server 2","typeEnum": 4,"key":
"075261f3-e421-41d7-b71b-8320dccbf194|SRV0000002", … }

{"index":{"_id":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000003","routing":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000003"}}

{"joinKey":"parent","name":"Testing Server 3","typeEnum": 4,"key":
"075261f3-e421-41d7-b71b-8320dccbf194|SRV0000003", … }

'

You need to specify the routing parameter in the request, and the routing parameter
must equal the key property of the component.

This example re-indexes the first document and then deletes the second document
in one bulk operation:

curl -XPOST 'localhost:9200/ savisioniq_components_075261f3-e421-41d7-
b71b-8320dccbf194/esentity/_bulk ' -H 'Content-Type: application/json'
-d'

{"index":{"_id":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000002"","routing":"075261f3-e421-41d7-b71b-
8320dccbf194|SRV0000002"}}

{"joinKey":"parent","name": "Renamed Testing Server 2","typeEnum":
4,"key": "075261f3-e421-41d7-b71b-8320dccbf194|SRV0000002", … }

{"delete":{"_id":"075261f3-e421-41d7-b71b-8320dccbf194|SRV0000003"}}

'

Note in the example above that for the delete action, there is no corresponding
source document after it since deletes only require the ID of the document to be
deleted.

The Bulk API does not fail due to failures in one of the actions. If a single action fails
for whatever reason, it will continue to process the remainder of the actions after it.
When the bulk API returns, it will provide a status for each action (in the same order
it was sent in) so that you can check if a specific action failed or not.

Search Documents
To search the documents persisted into Elasticsearch, you use the Search API. Refer
to the Elasticsearch documentation for details.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-search.html

Chapter 4 Using the REST API

23

List all Indexes
To get information about all the indexes, you use the cat indices API. The basic
syntax is:

GET <Savision iQ Server>:9200/_cat/indices

Using the curl tool, the basic syntax is:

curl -XGET 'localhost:9200/_cat/indices'

Delete an Index
To delete an existing index, you use the Delete Index API, specifying the index.

The basic syntax for deleting an index is:

DELETE <Savision iQ Server>:9200/<Index>

The following example shows how to use the curl tool to delete an index that was
previously created:

curl -XDELETE 'localhost:9200/savisioniq_components_075261f3-e421-
41d7-b71b-8320dccbf194'

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/cat-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/indices-delete-index.html

© Copyright 2021, Martello Technologies Corporation. All Rights Reserved.
MarWatch™, Martello Technologies, and the Martello Technologies logo are trademarks of Martello Technologies
Corporation.
Other product names mentioned in this document may be trademarks of their respective companies and are hereby
acknowledged.

	Chapter 1
	Introduction
	Document Purpose and Intended Audience
	Revision History

	Chapter 2
	About the REST API
	Basic Components
	Elasticsearch Node
	Elasticsearch Index
	Elasticsearch Type
	Elasticsearch Document
	Source

	Savision iQ Object Types
	Component

	Component Relationships
	Hosting Relationship
	Containment Relationship
	Reference Relationship

	Chapter 3
	Configuring an API Source

	Chapter 4
	Using the REST API
	Create and Update a Document
	Retrieve a Document
	Delete a Document
	Batch Processing
	Search Documents
	List all Indexes
	Delete an Index

